Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure
نویسندگان
چکیده
Bi2Te3 is a good thermoelectric compound that can be adjusted to por n-type with corresponding substitutions; however, less progress has been achieved for the property enhancement of n-type Bi2(TeSe)3 compared with p-type (BiSb)2Te3. Textured n-type Bi2(TeSe)3 with an enhanced thermoelectric performance has been developed in this study by combining texturing with in situ nanostructuring effects. The spark plasma-textured structure boosts the electrical transport properties and the power factors as benefits of the layered microstructure. It also leads to a simultaneous rise in the thermal conductivity along the a-axis. We developed a method to suppress increases in the thermal conductivity by inducing nanostructures, such as highly distorted regions and nanoscopic defect clusters, as well as dislocation loops that can form when texturing occurs at an optimized temperature. In this work, textured n-type Bi2(TeSe)3 materials having enhanced thermoelectric performances within a low temperature range are developed with a maximum dimensionless figure of merit (ZTmax) exceeding 1.1 at 473 K. The present method, which synergetically utilizes the texturing and nanostructuring effects, could also be applied to other thermoelectric compounds having layered structures. NPG Asia Materials (2016) 8, e275; doi:10.1038/am.2016.67; published online 3 June 2016
منابع مشابه
The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys.
Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT∼ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating s...
متن کاملApplication of Spark Plasma Sintering for Manufacturing of Thermoelectric Materials
V-VI thermoelectric compounds like Bi2Te3-based alloys are well known for room temperature applications like Peltier coolers or thermogenerators. Their anisotropic physical properties and mechanical weakness are a problem for the manufacturing. To overcome the mechanical problem Spark Plasma Sintering (SPS) was used. 2 inch Wafers of polycrystalline bismuth telluride based n-type and p-type the...
متن کاملInfluence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting
In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and t...
متن کاملRational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties.
A rational yet scalable solution phase method has been established, for the first time, to obtain n-type Bi(2)Te(3) ultrathin nanowires with an average diameter of 8 nm in high yield (up to 93%). Thermoelectric properties of bulk pellets fabricated by compressing the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n-type Bi(2)Te(3)-based...
متن کاملA strategy to optimize the thermoelectric performance in a spark plasma sintering process
Spark plasma sintering (SPS) is currently widely applied to existing alloys as a means of further enhancing the alloys' figure of merit. However, the determination of the optimal sintering condition is challenging in the SPS process. This report demonstrates a systematic way to independently optimize the Seebeck coefficient S and the ratio of electrical to thermal conductivity (σ/κ) and thus ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016